skip to main content


Search for: All records

Creators/Authors contains: "Henry Fuchs"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we aim at synthesizing a free-viewpoint video of an arbitrary human performance using sparse multi-view cameras. Recently, several works have addressed this problem by learning person-specific neural radiance fields (NeRF) to capture the appearance of a particular human. In parallel, some work proposed to use pixel-aligned features to generalize radiance fields to arbitrary new scenes and objects. Adopting such generalization approaches to humans, however, is highly challenging due to the heavy occlusions and dynamic articulations of body parts. To tackle this, we propose Neural Human Performer, a novel approach that learns generalizable neural radiance fields based on a parametric human body model for robust performance capture. Specifically, we first introduce a temporal transformer that aggregates tracked visual features based on the skeletal body motion over time. Moreover, a multi-view transformer is proposed to perform cross-attention between the temporally-fused features and the pixel-aligned features at each time step to integrate observations on the fly from multiple views. Experiments on the ZJU-MoCap and AIST datasets show that our method significantly outperforms recent generalizable NeRF methods on unseen identities and poses. The video results and code are available at https://youngjoongunc.github.io/nhp. 
    more » « less
  2. Fashion attribute editing aims to manipulate fashion im- ages based on a user-specified attribute, while preserving the details of the original image as intact as possible. Re- cent works in this domain have mainly focused on direct manipulation of the raw RGB pixels, which only allows to perform edits involving relatively small shape changes (e.g., sleeves). The goal of our Virtual Personal Tailoring Network (VPTNet) is to extend the editing capabilities to much larger shape changes of fashion items, such as cloth length. To achieve this goal, we decouple the fashion at- tribute editing task into two conditional stages: shape-then- appearance editing. To this aim, we propose a shape editing network that employs a semantic parsing of the fashion im- age as an interface for manipulation. Compared to operat- ing on the raw RGB image, our parsing map editing enables performing more complex shape editing operations. Sec- ond, we introduce an appearance completion network that takes the previous stage results and completes the shape dif- ference regions to produce the final RGB image. Qualitative and quantitative experiments on the DeepFashion-Synthesis dataset confirm that VPTNet outperforms state-of-the-art methods for both small and large shape attribute editing. 
    more » « less